
1

Abstraction as a Means for End-User Computing
in Creative Applications

Mira Balaban (mira@cs.bgu.ac.il)

Eli Barzilay (eli@cs.cornell.edu)

Michael Elhadad (elhadad@cs.bgu.ac.il)

Abstract— End-User computing is needed in creative artistic
applications or integrated editing environments, where the ac-
tivity cannot be planned in advance. Following [1], Concrete
abstractions (abstractions from examples), are suggested as a
new mode for function definition, appropriate for end-user editor
programmability. For certain applications, the direct, associative,
not planned in advance character of concrete abstraction plays
a qualitative role in the mere ability to specify abstractions.

In this paper we propose to use concrete abstraction as
a general tool for end-user programmability in editors. We
distinguish two kinds of abstractions: value abstraction and
structure abstraction, and explain how they can be combined.
We describe a framework of historical editing that is based
on a double view, in which the two abstraction kinds are
combined. Finally, BOOMS [2], an implemented prototype for
such an editing framework is described. BOOMS is a domain
independent toolkit, with three sample instantiations. We believe
that the proposed framework captures the conceptualization
operation that characterizes creative, associative work types,
and addresses the needs for end-user computing in integrated
environments.

Index Terms— Concrete abstraction, creative applications, mu-
sic composition, end-user computing, historical editing, inte-
grated environments.

I. INTRODUCTION

END-USER computing is needed in domains or applica-
tions where the activity cannot be planned in advance.

For example, in artistic applications, an experimental mode
of operation is common. In that mode the artist “plays with
the material” until the “right” intentions are formed. In music
composition a composer might wish to abstract away some
parameters from a concrete piece, generalize the structure of
a piece, apply these patterns on a different material, combine
and repeat patterns, etc. These methods have the quality of
programming processes, even if they are not usually termed
as such.

Smart editors also provide capabilities for end-user comput-
ing, since the designer of the editor cannot foresee and prepare
procedures for the desired patterns of editing and of user
behavior. Modern editors function as general computer envi-
ronments that control the overall range of activities involved in
a human-computer interaction. The editor is the management
system that supports generation, update, modification, testing,
running applications, providing feedback, system integration,
etc. As such, modern editors need to provide services that

This work was supported in part by the Paul Ivanir Center for Robotics
and Production Management at Ben-Gurion University of the Negev.

go beyond the immediate command-reaction character of
traditional editors. These objectives are achieved by enhancing
editors with end-user programming capabilities.

Editor programmability can help in avoiding repetitive
operations, and ensure consistency by abstracting complex
operations. In a text editor, for example, a user might wish
to make all emphasized text use a bold font instead of italic
font. In a graphical editor, a user might wish to change the
background color of all square windows to blue. These are
examples for simple operations that should be applied to many
objects. An example for a complex operation that should be
applied to multiple objects is: “make all grids that represent
numerical tables use double lines.” Although this operation
might involve only few objects, a uniform application via
abstraction can help in preventing user errors that can be
expected when complex operations are repeated.

Some editors are further strengthened to include full pro-
gramming capabilities. These include the ability to combine
primitive editor operations to form compound structures of
editor operations, create editor functions (abstractions) that
apply editor operations to document arguments, and enable
naming. For example, Emacs uses a full programming lan-
guage (Emacs Lisp), enhanced with document data structures
and primitive editor operations, that are integrated within a
user interface; Word enables users to define macro operations,
and write programs in Word Basic which is a variant of Visual
Basic; and graphic tools such as Photoshop can create HTML
widgets.

Nevertheless, standard end-user computing requires pro-
gramming capabilities on the part of the user. In artistic appli-
cations, like music composition, as described above, planned
end-user programming is not relevant, since the activity is
not planned and the users are not programmers. In powerful
editors planned end-user programming is also unsatisfactory,
even for users that have programming capabilities. The reason
is that most users are occupied with the subject matter of
their application, and are not willing to devote the time
needed for programming their editing environment. Some Lisp
programmers, indeed, bother to program and personalize their
Emacs environments, but most naive users simply repeat their
operations, and sometimes even do not notice the possibility
of abstraction.

The conclusion is that good end-user computing should
have the flavor of “on-the-fly” computing, i.e., should emerge
during the activity itself, when the user desires to create
a combination/repetition/abstraction/naming construct, based

2

on some concrete material. Concrete abstraction (abstraction
from concrete examples), was first suggested by Yann Orlarey
and his colleagues in [1], as a form of end-user editor pro-
grammability that is essential for music composition. The idea
is, roughly, to provide users with the capability to abstract a
concrete music piece into a pattern, and then apply the pattern
to other music pieces, thus yielding new music pieces, all
admitting the same pattern. Concrete abstraction turns out to
be an extremely powerful end-user programmability means in
music, since the abstraction can be applied to different music
parameters. The recent Elody composition environment built
in GRAME [3], [4] is centered around the concrete abstraction
user operation. A special case of concrete abstraction is
employed, in an implicit manner, in the DMIX real time music
composition environment of Oppenheim [5]. Using DMIX ,
a composer can create a music piece, abstract its rhythmic
structure away from it, and then “slap” another rhythmic
structure on it. This way, Oppenheim creates examples of
“Jazzified Bach preludes.”

Concrete abstraction is a method of function definition that
is generally not supported by programming languages. Pro-
grammers define functions in a planned and thoughtful mode:
they (analytically) observe the existence of a possibly useful
abstraction and use special linguistic symbols for variables
rather than using world objects (or their representations) di-
rectly. Programmable editors do not generally support concrete
abstraction either. The novelty of concrete abstraction lies in
the new mode for function definition. For certain applications,
as well as for programmable editors, the direct, associative,
not planned in advance character of concrete abstraction plays
a qualitative role in the mere ability to specify abstractions.

In this paper we propose to use concrete abstraction as
a general tool for end-user programmability in editors. We
distinguish two kinds of abstractions: value abstraction and
structure abstraction, and explain how they can be combined.
We describe a framework of historical editing that is based
on a double view, in which the two abstraction kinds are
combined. Finally, BOOMS [2], an implemented prototype
for such an editing framework is described. BOOMS is a
domain-independent toolkit, with three sample instantiations.
We believe that the proposed framework captures the con-
ceptualization operation that characterizes creative, associative
work types, and addresses the needs for end-user computing
in integrated environments.

Section II briefly introduces abstraction in Lambda Cal-
culus. Section III defines value and structure abstractions.
Sections IV and V describe the combination of the two abstrac-
tion kinds, and the historical editing framework. Section VI
describes related work and Section VII is the conclusion and
future work. Appendix I gives a brief overview of the BOOMS
system.

II. BACKGROUND ON ABSTRACTION

Abstraction is an act of generalization. For example, ab-
stracting the red color from a red flower gives the generalized
concept of a colorful flower, whose color is unknown. Consider
the motif in the following Example.

Example 1:

We represent a note as a pair: (〈pitch〉, 〈duration〉). In order
to keep with the traditional tonal terminology, a pitch specifier
consists of a diatonic name and an octave specifier, such as
C0 for C in the middle octave, or C5−5 to specify the same
thing using a numerical expression for the octave specifier.
Note sequencing (sequential concatenation), is represented by
the ‘−’ operation. The symbolic notation for the overall motif
is:

(C0,
1
4)−(E0,

1
4)−(F]0, 1

4)−(E0,
1
8)−(E0,

1
8)−(D]0, 1) (1)

Abstracting this motif over the pitch ‘E0’ yields the pattern

(C0,
1
4)− (2, 1

4)− (F]0, 1
4)− (2, 1

8)− (2, 1
8)− (D]0, 1) (2)

that functions as a motif generator: The “hole” 2 can be
replaced by anything that evaluates to a pitch. The motif
pattern can be further abstracted, for example over the ‘ 1

4 ’
duration, to yield a new motif generator, with two kinds of
holes:

(C0,4)−(2,4)−(F]0,4)−(2, 1
8)−(2, 1

8)−(D]0, 1) (3)

The “hole” 4 can be replaced by anything that evaluates to a
duration. The mode of combination itself can also be a subject
for generalization, yielding a new motif generator, with three
kinds of holes:

(C0,4) ◦ (2,4) ◦ (F]0,4) ◦ (2, 1
8) ◦ (2, 1

8) ◦ (D]0, 1) (4)

The “hole” ◦ can be replaced by anything that evaluates to a
motif combination operator.

Application is the opposite operation — an act of special-
ization of a generalized concept by means of substitutions. For
example, replacing 4 by 1

2 , ◦ by “concatenate within a delay
of 1

8 ” (denoted ‖1
8

), and 2 by G0 − E0, yields the following
motif:

Example 2: The symbolic representation of this motif is:

(C0,
1
2) ‖1

8
[(G0,

1
4)− (E0,

1
4)] ‖1

8
(F]0, 1

2) ‖1
8

(5)

[(G0,
1
16)− (E0,

1
16)] ‖1

8
[(G0,

1
16)− (E0,

1
16)] ‖1

8

(D]0, 1)
Note that the computation of this application requires eval-

uation rules for structured pitch specifiers (expressions). The
straightforward replacement, dictated by the recent application
yields the “motif”:

(C0,
1
2) ‖1

8
(G0 − E0,

1
2) ‖1

8
(F]0, 1

2) ‖1
8

(6)

(G0 − E0,
1
8) ‖1

8
(G0 − E0,

1
8) ‖1

8
(D]0, 1)

3

To obtain a real motif, we still need to compute the intended
note meaning of (G0−E0,

1
2) and (G0−E0,

1
8). A reasonable

rule is: “Replace any (N1 − . . . −Nm, D) expression by the
note sequence: (N1,

D
m)− . . .− (Nm,

D
m).” Applying this rule

for the recent application yields the motif in Example 2.

To conclude:
Abstraction is an operation on two values. The exact types

of values used may vary, but usually we abstract a
composed value on some simple value. Conceptually,
abstracting a composed value v from some simple value
a means “stripping off” the a property from v, creating
a generalized object — a function to be applied later.
Technically, the result of such an abstraction is replacing
each occurrence of a in v by a variable x, yielding a
function of a single parameter x.

Application is the opposite operation — instantiating an
abstraction. It takes an abstraction function f with param-
eter x, and some value v, and instantiates (replaces) the
abstraction parameter by the applied value. So, while the
abstraction operation creates a function f with a param-
eter x, the application operation results in an application
of the abstraction f on a given value v. For example,
application of the above colorful flower on a yellow color
yields a yellow flower. This gets us closer to the very
basic notion of Lambda abstraction as defined in Lambda
Calculus, where abstraction on values is the only means
for function creation.

A. Lambda Calculus: Abstraction & Application Formalism

Lambda Calculus [6], [7] is a simple language of expres-
sions that are generated by juxta-positioning and Lambda
abstractions. The intended meaning of a Lambda abstraction
construct is a function based on a given pattern (expression).
The intended meaning of juxta-positioning is that of applica-
tion. Overall, there are three kinds of expressions1:

1) Symbols (atoms);
2) Applications: 〈expression〉 〈expression〉;
3) Lambda expressions: λ〈variable〉 . 〈expression〉.

Parenthesizing is used for resolving ambiguities. We take as
given some built-in arithmetic primitives (such as numerals
and simple operators).

For example, the expression ‘(+ n n)’ can be abstracted into
the “n+n” function ‘λn. (+ n n)’, and then further abstracted
into the “n op n” higher order function ‘λop. λn. (op n n)’.
Computation in this calculus is obtained by application of
λ-expressions to their right neighbor expressions, taken as
arguments. This application is called reduction, and it is done
by means of substitution. Repeating these reductions as much
as possible is called evaluation. Here are some examples:
• The application ‘((λn. (+ n n)) 2)’ reduces to ‘(+ 2 2)’,

which yields ‘4’. Similarly, ‘(+ (λn. (+ n n) 2) 3)’
evaluates to ‘7’.

• The application ‘((λop. λn. (op n n)) ∗ 2)’ reduces into
‘((λn. (∗ n n)) 2)’ which yields ‘4’.

1The following explanation is highly informal. For a complete and formal
description the reader is referred to [6], [7].

• The application ‘((λf. (f ∗ 2)) (λop. λn. (op n n n)))’
reduces into ‘((λop. λn. (op n n n)) ∗ 2)’, then it reduces
to ‘((λn. (∗ n n n)) ∗ 2)’, then ‘(∗ 2 2 2)’ which finally
yields ‘8’.

Note that it is only possible (using the rules given) to create
functions of one variable. The way to imitate N -ary functions
is to abstract one-by-one on all variables, getting a function
that returns a function. To apply this function, we again apply
it on all inputs, one-by-one. This is called currying. For the
purpose of this paper, ‘λx. λy. . . .’ can be regarded as a
simple, two-variable function.

The Lambda Calculus is a full computational model, having
Turing Machine equivalent power. It provides the basis for
functional programming languages like Scheme, Lisp and
ML. Our interest in Lambda Calculus here results from the
explicit support for the operations of concrete abstraction, and
application. This observation was first made by Yann Orlarey
from GRAME2. For example, the Motif generator examples
from the introduction can be formalized in Lambda Calculus,
as follows:

Motif generator 2:
λE0. ((C0,

1
4)− (E0,

1
4)− (F]0, 1

4)−
(E0,

1
8)− (E0,

1
8)− (D]0, 1))

Motif generator 3:
λ 1

4 . λE0. ((C0,
1
4)− (E0,

1
4)− (F]0, 1

4)−
(E0,

1
8)− (E0,

1
8)− (D]0, 1))

Motif generator 4:
λ−. λ 1

4 . λE0. ((C0,
1
4)− (E0,

1
4)− (F]0, 1

4)−
(E0,

1
8)− (E0,

1
8)− (D]0, 1))

In the pure Lambda Calculus, there is a uniform pool of
symbols. Hence, abstracting on ‘E0’, on ‘ 1

4 ’ and on ‘−’
are all the same. However, in realistic implementations, like
Scheme and Lisp, atoms are distinguished into different types.
In particular, there are constants (that evaluate to themselves)
and variables. For example, numbers and strings are constants
in Scheme and in Lisp. In such contexts, abstracting on a
constant involves substituting its occurences by a variable,
since a constant cannot play the role of a variable (cannot
evaluate to anything which is not its self-evaluating value).
For example, motif generator 4 used the constant ‘ 1

4 ’ as a
variable name3, so we replace it by a variable and we get:

λ−. λdur. λE0. ((C0, dur)− (E0, dur)− (F]0, dur)−
(E0,

1
8)− (E0,

1
8)− (D]0, 1))

The application of the last motif generator to G0 − E0 as an
‘E0’, to ‘ 1

2 ’ as the dur-ation, and to ‖1
8

as an ‘−’, that yields
motif 5, is obtained by evaluating the application expression:

Motif generator 5:
(λ−. λdur. λE0.

((C0, dur)− (E0, dur)− (F]0, dur)−
(E0,

1
8)− (E0,

1
8)− (D]0, 1)))

‖1
8

1
2 (G0 − E0)

2Orlarey further points to the artistic importance of keeping the names of
the original values, and not replacing them by synthetic variable names.

3In these languages, ‘−’ and ‘E0’ are valid variable symbols. ‘ 1
4

’ is not,
since it is a numeric constant.

4

and applying the simplification rule:
(N1 − . . .−Nm, D)→ (N1,

D
m)− . . .− (Nm,

D
m)

Using Lambda Calculus as an underlying theory for a
concrete abstraction based editor, we guarantee the correct-
ness of the implementation semantics, since all the theoretic
machinery involving scoping, naming, and reduction order is
well-understood. In the rest of this paper, we will use an
intuitively relaxed Lambda Calculus notation for examples.

III. AN EDITOR WITH CONCRETE ABSTRACTION:
VALUE AND STRUCTURE

Existing editors can be classified into “what-you-see-is-
what-you-get” editors, and “specification-based” editors. The
first kind can be termed extensional editors4, since they apply
editing operations directly to the end product, i.e., extensional
document. For example, in a “numbering environment” in
Word , the operation “insert end-of-line” is interpreted as
adding a new numbered entry. That is, the user applies the
editing operation directly to the numbered text (extensional),
and the editor interprets it and performs it, based on the
operation and the context (properties of the document). The
second kind of editors can be termed intensional editors5,
since they apply editing operations to an intended specification
of the end product, rather than to the extensional product itself.
For example, Emacs and LATEX-mode is an intensional editor,
since the editing operations are applied to an intensional-
structured specification of the extensional document.

The two kinds of editors have complementary properties.
Work with an extensional editor is intuitive and immediate,
but it is up to the editor to interpret the user intention, and
up to the user to guess the editor’s interpretation. Work with
an intensional editor is, usually, more demanding, since the
intensional specification might be complex to understand, and
the user might be confused about the exact extension being
specified. Yet, intensional specification is richer, and might
express fine differences that may be cluttered in an extensional
end-product. For example, a structured visual object, whose
components can be combined by putting them one next to the
other, or behind each other, or on top of each other, might be
constructed in different orders, all yielding the same object.
An intensional editor can capture such differences, while an
extensional one cannot. Moreover, there might be intensional
relationships among the components of such an object, e.g.,
specifying that the edge components must be the same. Such
a specification means that the replacement of a component
object on one edge implies also the automatic replacement of
the component on the other edge. An extensional editor cannot
capture such distinctions and relationships.

The addition of concrete abstraction to an editor raises
the question as to the kind of the editor. Since concrete
abstraction is applied directly to the object on which the
editor operates, it is not surprising that the two kinds of
editors give rise to two different kinds of concrete abstraction.

4Following the Logic terminology, where the actual denotation of a symbol
in the real world is called its extension.

5Following the Artificial Intelligence terminology, where the specification
of objects or events in the real world is termed intension.

Extending an extensional editor with concrete abstraction can
be termed extensional abstraction. It was first introduced and
implemented by Yann Orlarey and his colleagues in [1]6. Ex-
tending an intensional editor with concrete abstraction can be
termed intensional abstraction. Intensional abstraction can be
further refined into value abstraction and structure abstraction.
These distinctions were first introduced by Eli Barzilay in his
BOOMS system [2].

Value abstraction is value based, i.e., it is applied to all
occurrences of a value that appears in the edited object. All
music examples described earlier demonstrate value abstrac-
tions, since they abstract all occurrences of the note ‘E0’, or
of the duration ‘ 1

4 ’, or of the operation ‘−’. The abstraction
supported by the Lambda calculus is a value abstraction. Value
abstraction can be used in an extensional and in an intensional
editor. The Elody composition environment built recently by
the GRAME group [3], [4] is an intensional environment
with a value concrete abstraction. That means that a user of
the Elody environment can create a music object, e.g., an
‘A − (A+2) − A’ melodic construct of three notes, where
A is a note, and ‘A+2’ is a note 2 half tones higher than
A. The user can then apply concrete value abstraction on
the A note, yielding the melodic three-element pattern of
‘λA. A − (A+2) − A’. In an extensional editor, the music
object ‘A− (A+2)−A’ would first be computed (extended),
resulting, lets say, ‘A−B−A’. The value abstraction on ‘A’
would result in ‘λA. A − B − A’, thereby suppressing the
‘A+2’ intension for ‘B’.

Structure abstraction is structure based, i.e., it is applied to
references to structural components of the, necessarily inten-
sional, edited object. For example, in the above ‘A−(A+2)−A’
melodic example, the structure can either identify the first and
last occurrences of ‘A’ using a single reference, or distinguish
them, using two different references. In the first case, structure
abstraction on the single reference to ‘A’ yields the same
pattern as value abstraction on ‘A’, while in the latter case,
structure abstraction on the reference to the first ‘A’ yields a
different pattern: ‘λref. ref − (ref+2)−A’ (assuming that
the second component uses reference to the first ‘A’).

In this section we introduce these two kinds of concrete
abstraction. Value abstraction is introduced by observing the
GCalc tool of [1] for creative experimentation with colored
cubes. Structure abstraction is introduced using synthetic ex-
amples that are inspired by the BOOMS system.

A. GCalc: A Value Abstraction Based Editor

The GCalc system was motivated by the wish to endow a
music composition environment with conceptualization capa-
bilities. The idea is to use on the fly creation of abstractions
in an intuitive way. In order to explore these ideas, the authors
concentrated on a simple structured domain of colored cubes,
where they demonstrate that adding value abstraction can
produce surprisingly complex results.

The domain of GCalc consists of structured colored cubes.
The atomic values are cube colors: red, green, blue, white,
transparent and so on. Structured values are created with three

6Although they did not use this terminology.

5

blue | yellow blue|yellow
transparent /

transparent
blue|yellow

ZigZag

blue|yellow
yellow|blue /

yellow|blue
blue|yellow

(Name this ZigZag)

This is too complex to describe
with simple constructions. (De-
scribed in Figure 2 using abstrac-
tions.)

Fig. 1
SOME STRUCTURED CUBE EXAMPLES

constructors: Left-Right (LR), Top-Bottom (TB) and Front-
Back (FB). The structured cubes of GCalc are pure data
values, since they carry no identifying states such as their grid
locations. Sameness in GCalc is pure value equality. Figure 1
presents several structured cubes7. In the example, we use the
notation of [1] for the operators: LR is denoted 2 |2, TB
is denoted 2

2
and FB is denoted 2/2. Additional examples,

emphasizing the power of concrete abstraction, and the full
implementation are described in [2].

Adding concrete value-abstraction and application to the
GCalc editor results in an editor that can create and apply, on
the fly, single argument functions formed by color abstractions.
Figure 2 presents a GCalc running session, with some concrete
value-abstraction and application examples. Abstraction and
application are conceived as two new constructors: the ‘ab-
stract’ operation creates function (lambda) expressions, and the
‘apply’ operation creates application (reduction) expressions.
Application expressions are evaluated after their creation,
yielding possibly new expressions. In that sense, GCalc is
an extensional editor with concrete value-abstraction. The
addition of abstraction yields a new kind of atomic values
— variables (based on colored cubes).

B. Domain Specific Observability and Sameness

The values of a structured domain are formed with domain
constructors like the LR, TB, and FB constructors in the
colored cubes domain. In most domains the constructors
obey certain regulations with respect to the domain specific
observation means. Consequently, different structured values
appear to be the same (i.e., they have the same normal form
with respect to the common observation means; they “evaluate
visually” to the same data value). For example, if a constructor
“◦” is observed to be idempotent and commutative, then (v◦v)

7The example is based on a Scheme implementation for GCalc, done by
Eli Barzilay as part of the BOOMS project.

ZagB

An abstraction of ZigZag
from Figure 1:
ZagB = λblue. ZigZag

Applying it to transparent and to
ZigZag:
(ZagB trans), (ZagB ZigZag)

f

Further abstract ZigZagB:
f=λyel. λblue. ZigZag

Given f , this object is:
(f (f (f black trns) green) trns)

d D

Y

Name these d & D:
d = (red

blue |
blue
green),

D = λblue. d

Repeatedly applying D on d up to
infinity with the Y combinator:

(D (D d)), Y, (Y D)

Fig. 2
EXAMPLES OF ABSTRACTIONS AND APPLICATIONS

is observably the same as v, and (v1 ◦ v2) is observably the
same as (v2 ◦ v1). We demonstrate the problematic nature of
observable dependent equality in the two domains governing
this paper, the cubes and the music domains.

The cubes domain: Since the obvious observation means is
the cubes visualization, the structured cubes (

red|green
green|red),

and (red
green |

green
red) have exactly the same visualization:

. Similarly, (red | red), (red
red), (red|red

red), etc., have the
same visualization, a red cube.

The music domain: The obvious, but not necessarily musi-
cally correct, observation means is the music piece, i.e.,
the timed set of notes denoted by a music specifier. With
respect to this observable, if d1 and d2 are duration ex-
pressions that evaluate to the same duration, then (p, d1)
and (p, d2) denote the same note, using a note constructor
that inserts some default values for the dynamics and the
timbre parameters. Similarly, ((p, d) | (p, d))8 is observ-
ably the same as (p, d). Likewise, if M1,M2,M3,M4

are motif values, then ((M1 | M2) − (M3 | M4)) and
((M1 − M3) | (M2 − M4)) are observably the same,
although they carry different music intentions.

We see that observable sameness of data values in a domain
depends on the available observation means and on domain
specific properties of the constructors. Since concrete value

8The operation of note simultaneity is denoted by “|”.

6

abstraction as defined by the Lambda Calculus is domain
independent, it seems rational for an abstraction based editor
to keep the abstraction engine independent from domain rules
and from observation means that presumably will constantly
be refined (thereby turning previously same values different).
The editor might assume that each specific domain provides
a total and efficiently computable normalization procedure for
its values9.

The normalization procedure should be distinguished from
the observable-rendering procedure that is used to actually
present the data values to the user. Using an observable-
rendering procedure allows the editor to maintain objects that
are observed the same but represent different intentions. In
the cubes domain, the observable-rendering procedure is the
graphical rendering procedure that visualizes a structured cube,
based on the properties of the cube constructors. In the music
domain, the play procedure, that computes the actual timed
set of notes, based on the properties of the music constructors,
serves as an observable-rendering procedure.

Sameness and intensionality: Consider a concrete arith-
metic expression like 2 × 2. A user might wish to express
explicitly that 2 is to be multiplied by itself, (e.g., expressing
the area of a square), or by another number that, incidentally,
happens to be 2 (e.g., a 2 by 2 rectangle). The printed form
looks similar in both cases, but the intended meaning is
different — a programmer would use multiplication for the
second case and square for the first. Using planned abstraction,
the two intensions are captured by the Lambda expressions:
• ((λx. x× x) 2)
• ((λx. λy. x× y) 2 2)

This distinction between observability and sameness does not
arise from sameness algebraic properties of domain construc-
tors, but from different intensions carried by components of
the expression. This distinction, that the user is interested in
preserving, cannot be captured by concrete intensional value
abstraction. It is precisely for that purpose that we introduce
concrete structure abstraction.

C. Structure Abstraction

The dual structure-intensional companion of concrete value
abstraction is concrete structure abstraction. Value abstraction
is applied to uniform data values, while structure abstraction
is applied to intensional objects that carry, in addition to
their value, an identity. Consider, for example, the “Three
Men” picture in Figure 3. Suppose we edit this picture using
an editor that supports concrete abstractions; if we try to
abstract on the hair colors in this picture we get something
like λblack. λgrey. OriginalPicture.

However, suppose we realize that the hair and beard color
of the third person are intensionally identified, while it is just
a coincidence that the first person has the same hair color.
Accordingly, an intension-aware abstraction of the color pat-
tern in this picture should separate the abstraction on the hair

9In the GCalc implementations [1], [2] the immediate escape from normal-
ization takes the identity function as a normalization procedure. As a result,
GCalc cannot identify different values with the same observable, as equal
values.

Fig. 3
THE “THREE MEN” PICTURE

color of the first person from the abstraction on the necessarily
identical color of the hair and beard of the third. This is
impossible with value abstraction since all black regions have
identical color. In order to implement this intension we need
to conceive each color occurrence as an object, and identify
the hair and beard color of the third person as the same
color object. The intended abstraction should be applied to
the reference to that color object. In a Scheme-like language,
this structured view can be written:

(let ((color1 ’black)
(color2 ’red)
(color3 ’black))

(picture-of-men
(make-person1 ’hair color1)
(make-person2 ’hair color2)
(make-person3 ’hair color3

’beard color3)))

and the desired abstraction is:

(lambda (color1 color2 color3)
(picture-of-men

(make-person1 ’hair color1)
(make-person2 ’hair color2)
(make-person3 ’hair color3

’beard color3)))

Name this abstraction “The3Men.” Applying it to the color
values “white”, “white”, “green”, i.e., (The3Men ’white
’white ’green), yields a correct answer.

Structure abstraction in the context of the cubes domain
can allow selection of particular color occurrences to abstract
upon. For example, in the cube of Figure 4a, if the two marked
black regions are intensionally identified then structural ab-
straction can distinguish them from the other black region; this
creates an abstraction that when applied to, say gray, yields
the cube described in Figure 4b.

In music, structure abstraction allows for abstraction on
particular note occurrences. For example, when working on
the motif in Example 1 (from Section II), structure abstraction
can be used to abstract only over the first and third occurrence
of ‘E0’, so that when applied to ‘G0−E0’ yields the motif in
Example 3:

Example 3:

(C0,
1
4)− (G0,

1
8)− (E0,

1
8)− (F]0, 1

4)−

7

(a) an intensional cube: the
two marked regions are in-
tensionally identified

(b) following structure ab-
straction and application

Fig. 4
USING AN INTENSIONAL CUBE

(E0,
1
8)− (G0,

1
16)− (E0,

1
16)− (D]0, 1)

D. A Formal Definition of Structure Abstraction

Concrete structure abstraction is meaningful if the expres-
sions to which it is applied enable distinction and identification
of occurrences of their components. That is, expressions can be
conceived as single origin Directed Acyclic Graphs (DAGs),
with leaves that correspond to atomic data values, and internal
nodes that correspond to constructors (i.e., constructors are
applied to expression references). DAGs represent expressions:

1) A DAG that contains a single node represents the data
value associated with this node.

2) A composite DAG with origin v and directed arcs to
nodes v1, . . . , vn, represents the expression

exp[v] = constructor[v](exp[v1], . . . , exp[vn])

Note that the nodes v1, . . . , vn are not necessarily distinct.
Two arcs that lead to the same node capture the intended
identicalness of the arguments of the constructor of v (like the
third person’s hair and beard in Figure 3). Clearly, different
DAGs can represent the same expression since references are
lost in the above translation (recall the discussion on sameness
and observability). The meaning of a DAG in a given domain
is obtained by domain-specific evaluation of the expression
represented by the DAG. Figure 5 shows two DAGs that
represent the same expression. The expression evaluates to
the cube in Figure 4a. Now we are in a position to introduce
structure abstraction and application which are the two major
constructors enabling concrete structure abstraction.

Structure abstraction is a two argument constructor (an
internal node), that accepts a DAG — the abstraction body,
and one of its nodes — the abstraction node. A DAG
whose origin corresponds to the abstraction constructor is an
abstraction DAG (see Figure 6). The nodes in the sub-DAG
of the abstraction node (including itself) are called bound in
the abstraction DAG. In an arbitrary DAG, nodes that are not
bound are free. That is, given a DAG G and a node v in G, v is
bound if and only if v is an abstraction node, or a descendant
of one, in an abstraction sub-DAG of G.

An abstraction DAG G is valid if its abstraction node
is free in its body, and is the origin of a DAG G′ whose
nodes are not externally referenced. That is, except for the
abstraction node, the nodes of G′ are referenced only from

Black Black Black Black

Black

Fig. 5
TWO CUBE-DAGS THAT EVALUATE TO THE CUBE FROM FIGURE 4A

Structure abstraction

Abstraction body

Abstraction node

Bound nodes

λ

Fig. 6
AN ABSTRACTION DAG

nodes in G′. In particular, in nested valid abstractions, the
outermost abstraction node cannot be within the sub-DAG of
the inner abstraction. Figure 7 demonstrates a valid and invalid
abstraction DAGs. Note that an abstraction DAG stands for an
intensional abstraction, i.e., a function on DAGs. Therefore,
an abstraction DAG does not represent an expression (it is
meaningless outside the DAG domain).

Application is also a two argument constructor intended
to apply an abstraction on an argument. The arguments are
labeled the application operator DAG, and the application
argument DAG. A DAG whose origin corresponds to the
application constructor is an application DAG. A redex DAG is
an application DAG whose operator DAG is a valid abstraction
DAG and is disjoint from the application argument DAG.

A reduction of a redex DAG is demonstrated in Figure 8.
The reduction rule follows:

Let v, v1, v2 be the origins of the redex DAG, its
operator DAG, and its argument DAG, respectively.
The reduction of this redex DAG is:

v −→ body(v1)[v2/abs(v1)]

where body(v1) stands for the origin of the abstrac-
tion body of v1, abs(v1) for its abstraction node, and
x[y/z] is the DAG obtained from x by replacing the

8

λ

λ

λ

λ

λ

λ

A example of a valid abstraction.
An invalid abstraction: the internal abstrac-
tion node’s DAG is externally referenced and
the external abstraction node is not free.

An invalid abstraction: the external abstrac-
tion node’s DAG is externally referenced by
the internal abstraction node arc.

Fig. 7
ONE VALID AND TWO INVALID ABSTRACTION DAGS

λ

ap

x

y

z

x

z

v1

v

body(v1)

abs(v1)

v2

Fig. 8
REDUCING AN APPLICATION.

sub-DAG rooted in z by the one rooted in y10.
Note that since v1 is the origin of a valid abstraction DAG,
its application does not leave “dangling references”, resulting
from external references to nodes in the abs(v1). The intended
DAG function of a valid abstraction DAG is implicitly defined
by this reduction rule.

The structure abstraction and application rules introduce a
DAG-based analogue of the Lambda calculus. It is well defined
due to the above restrictions — valid abstraction DAGs and
disjoint reduction arguments. Moreover, since the expressions
are DAGs this formalization is simpler than Lambda Calculus.
In particular, there are no problems with bound and free
occurrences of symbols, conflicting substitutions, and different
reduction orderings.

DAG evaluation is obtained by applying reductions until no
more redex DAGs are available, then evaluating the expression
that corresponds to the resulting DAG. Remember that in
case the final redex-free DAG still contains abstraction or

10This presentation does not cope with replacement formally — one way
to handle such side effects is to say that the whole DAG is copied, making
the necessary modifications.

application nodes, then it does not represent an expression,
so its evaluation is undefined.

The computational power of value and of structure abstrac-
tions is the same, since structure abstraction can simulate
value abstraction, and structure abstraction can be simulated
with planned lambda abstractions. The difference lies in the
concrete abstraction mode. In the planned mode, the sharing
and distinctions among multiple occurrences of a value are
captured by sharing abstraction variables, or distinguishing
among them, as demonstrated in the 2 × 2 example in
subsection III-B. However, in the concrete abstraction mode,
value abstraction can generate only the λx. x×x abstraction,
while structure abstraction can create both, since the sharing
intension is kept in the DAG expression11.

E. Structure Abstraction in an Interactive Environment

The formalization that was presented in Section III-D only
handles a static mathematical world. When we get to a “real-
world” interactive environment, we must consider side-effects
in the form of substitutions that change the DAG. This is
dangerous since abstractions that were made can change their
functionality or even become invalid due to changes.

This means that a slightly different strategy should be
employed to cope with these changes: when an abstraction
is made, its DAG is copied to an abstraction environment.
This environment is an association list that binds names with
stored abstractions; it forms a read-only memory for these
abstractions which means that they cannot change. If a valid
abstraction is made, referring to it using its name always
returns a copy which is the same as the original one12.

11An idea that was suggested by Orlarey is the concept of generalized
abstractions, where a simple abstraction over some construction can take any
value as an argument, and application will take the form of pattern-matching
and substitution. The structure abstractions presented here can be viewed as
a much simplified form of generalized abstraction.

12Note that this does not contradict a mechanism to delete bindings or
redefining them — the only guarantee we need is that stored DAGs never
change.

9

Using this approach, abstractions are not used directly in
DAGs: a new kind of node is introduced that is a name refer-
ence. The application reduction rule is changed accordingly, a
redex has a valid name reference as its operator, and reduction
is performed using the abstraction DAG referenced by this
name. This is similar to the way BOOMS is implemented13,
see Appendix I for more details.

IV. COMBINING THE TWO ABSTRACTIONS IN A SINGLE
TOOL

In the previous section we have seen that concrete structure
abstraction is more powerful than concrete value abstraction
since it uses identities to express sharing of subcomponents
in an intuitive way. In this section we argue that, neverthe-
less, it cannot be used as a replacement for concrete value
abstraction. This seemingly contradictory argument results
from the truly contradictory nature of concrete abstraction and
a fully structured intensional object. Concrete abstraction is
intended to support a creative spontaneous mode of work,
where abstractions arise in an associative manner, out of
concrete (extensional) objects, e.g., a cube, a music piece, or
a document. Manipulation of a structured intensional DAG
object, on the other hand, must be planned, since the complex
structure usually clobbers the value of the expression to which
it evaluates. Hence, it is hard to come up with associatively
created abstractions.

Consider, for example, the DAG in Figure 9 that represents
the intensional cube from Figure 4a. The actual cube intended
by this DAG expression is quite obscure. Consequently, al-
though the intensional DAG structure identifies the first and
third occurrences of black and enables concrete abstraction on
them, it is unlikely that a user will come up with that idea,
unless it was planned in advance — but in that case concrete
abstraction is not necessary in the first place. We see that the
straightforward generalization of elements in concrete objects,
which is the essence of concrete abstraction, is not possible if
the user interacts only with the structured object.

We claim that both forms of concrete abstraction are nec-
essary for supporting a creative, associative mode of object
development. Concrete value abstraction is the natural mode
of operation, while the intensional structure of the manipulated
objects arises from the history of object development. If the
management environment keeps both the concrete object and
the history of its development, then abstractions can emerge
in a natural way from the concrete object, but be reflected and
performed in its associated intensional object. For example,
Figure 10 presents a dual simultaneous view of the cube from
4a, and its intensional DAG structure from Figure 9. The DAG
might have been developed during the construction of the cube.
If users can simultaneously observe the cube and its DAG, then
they might realize that the first and third occurrences of black
are based on a single object, and that an abstraction on this
object is desirable. Similarly, in music, a composer wishes,
typically, to work with the actual music piece, in a bottom-up
mode. Using a structure-enabled tool, the intended structure of

13Such a store is also useful for named objects that allow named copy-paste
operations.

Fig. 9
THE STRUCTURE OF THE CUBE FROM FIGURE 4A

Fig. 10
A DUAL EXTENSIONAL-STRUCTURAL VIEW OF THE CUBE FROM

FIGURE 4A

the composed piece can be maintained together with the piece,
and structure abstraction can be applied to the DAG structure,
by observing the actual piece and its structure simultaneously.
The main point is that this abstraction is possible and feasible
only if both the extensional and the intensional objects are
equally accessible to the user.

The above discussion leads to the conclusion that a powerful
concrete abstraction requires a double-view historical editing
tool, that provides smooth integration of the extensional and
intensional views of an object in a single end-user tool. Such
an interface should give the “look and feel” of an exten-
sional editor, keeping a structural representation that is held

10

Fig. 11
STRUCTURE EDITING IN BOOMS .

internally. The tool should enable the user to switch, easily,
to a structure editing mode, expressing intentions. Moreover,
we claim that the intensional structure of the object being
developed can emerge from the history of user operations
during object development. That is, certain operations can
be viewed as having indication for intentions. For example,
a copy-paste operation usually means that the newly created
subcomponent copy is actually identical to the first in an inten-
sional sense. BOOMS is a prototype tool that supports double-
view editing. Figure 11 demonstrates a BOOMS session for
editing the intensional structure of the cube from Figure 4a:
first, a structure abstraction was made from the given DAG
and named “foo”, then a red cube replaced the first black
cube and finally an instance of this abstraction was created and
given white and gray colors as arguments. In the next section,
we describe a model for a double-view editor that integrates
the extensional and intensional views of objects, and enables
smooth interactions between the two modes.

Still another benefit of a double-view development tool has
a flavor pf educating users. The vision is that such a tool
allows beginners to work in a purely extensional environment,
and switch to the structured view from time to time for
exploring the structure that is being created. In later stages,
users learn the meaning of the structure and its usefulness
— they casually start editing the structure to better represent
their intended structure. Eventually, they fully exploit the two
views, switching as needed.

V. AUGMENTING END-USER PROGRAMMING
IN EDITORS WITH CONCRETE ABSTRACTION

End user programming aims at giving the user the option for
doing a complex sequence of operations once, then abstracting
it into a “reusable operation” that can be applied later on in
different contexts. It can be viewed, in itself, as an editing
domain whose values are stored in buffers, and are created
by constructors that are primitive edit operations like create,
compose, delete, select, copy, change attribute. The exact
nature of values vary, of course. In Notepad a value is a
sequence of characters, in Paintbrush a value is a bitmap, in
Word a value is a sequence of characters and objects with

attributes. Abstraction in this domain yields templates of the
domain values.

The main difficulty with which end-user programming has
to cope is that a “standard” naive user is primarily interested in
getting some document done, and is not willing to put efforts
into improving the editing process. Therefore, end-user tools
should have an associative, immediate flavor, that does not
require planning on the user’s part. Concrete abstraction seems
like a natural mechanism since it emerges in an associative
way within the editing session, rather than being a planned in
advance activity.

The kinds of possible concrete abstractions in an editing
domain depend on the nature of the values being stored. The
richness of the editor buffer has direct impact on the power
of the concrete abstractions that it can support. We distinguish
four levels of value domains:
Extensional values: Domain values are fully computed at

each primitive editing operation. Such editors keep no
structure at all, for example, PaintBrush.

Intensional structured values: Domain values keep the in-
tended structure, as in the cubes or the music domains, but
have no commitment to the structure as entered during an
editing session. For example, a normalization procedure
can be used to optimize the structured values and reduce
them into some observable based canonical form.

Intensional historically structured values: Domain values
keep the intended structure, as entered during an editing
session — no information on cloning and destructive
operations is kept. The GCalc editor as well as many
modern editors like XFig, MacDraw and Coreldraw keep
buffered values of this kind.

Intensional identity-based historically structured values:
Domain values are DAGs, called edit graphs, that keep
the intended structure, as entered during an editing
session. BOOMS keeps values of this kind, Windows’
OLE provides a similar but restricted capability for
applications — embedded “links” to objects allow users
to specify sharing of the same object.

The kind of values that an editor stores is a design decision
taken by the implementation designer. Extensional values are
probably the easiest to manipulate, but support weak editing
operations: An undo operation requires storing snapshots of
buffer states; a redo operation is not possible. Intensional,
normalized structured values may be optimal, free of redun-
dancies, and enable comparison of values that were built in
different ways. However, such values can support concrete
value abstraction on the normalized structure alone, and not
over the sequence of user operations. Intensional, historically
sensitive, structured values can support concrete value abstrac-
tion on user operations, as demonstrated in GCalc. Still, the
structured values are pure values, and keep no identities for
their components. In particular, they do not keep track of
cloning and of destructive operations. A delete operation is
fully computed and removed from the editing history.

Only the DAG-based values can store the full scale of
editing operations. An edit graph can support structure sharing
among its components, as demonstrated in the introduction of
concrete structure abstraction. This way intensional dependen-

11

cies among objects that imply that changing the properties of
one object can change its occurrences in other contexts can be
guaranteed. For example, a copy operation implies structure
sharing between the source and the target objects. Similarly,
a grouping operation implies structure sharing between the
objects being grouped to the group object itself. The following
example emphasizes the value of structure sharing:

(define A (+ (+ 1 2) 3))
(define B (+ 1 2))
(define C (+ B 3))

Although ‘A’ and ‘C’ evaluate to the same number, an inten-
sional, identity-based, historically structured editor should not
optimize ‘C’ to be internally equal with ‘A’ because it then
loses the structure sharing with ‘B’.

Since DAG values can support concrete structure abstrac-
tion, they enable full concrete structure abstraction of user
operations. This is important, especially for supporting editor
operations like undo, redo. If the editor keeps a fully historical
edit graph then concrete structure abstraction can be used
to define redo abstractions. That is, take a sequence of edit
operations like group, copy, paste, apply abstraction to any
of its components, and then apply the abstracted sequence in
a different context, to different components.

We suggest to use the double view approach described in
Section IV to implement a historical editor. The edit graph can
evolve internally, as a result of user operations. The user can
interact with a regular extensional editor buffer, but can consult
the structured view for more complex editing operations. redo
abstractions can be defined as an end-user structure abstrac-
tion applied to the edit graph. These capabilities are partly
implemented in BOOMS , which is described in Appendix I.

VI. RELATED WORK

A. Computer Music Environments

Common Music : BOOMS is inspired from music compo-
sition environments and from graphical and historical editors
in general. In composition environments, the need to support
creativity requires the user to be endowed with programming
capabilities. Common Music [8], for example, is a powerful
and popular environment for algorithmic composition. It pro-
vides a rich set of music primitives, types, and operations,
including advanced notions such as music streams, and hi-
erarchy supporting containers. Common Music is embedded
in Common Lisp, and the user can program the composition
using the notions supported by the system. A professional
usage of Common Music requires full programming skills.

DMIX : A different approach for supporting creativity
in music composition is employed in real time composition
environments like DMIX [5] and Elody [4], that replace (or
extend) planned programming with direct visual composition.
DMIX [5] has an expressive user-interface that operates in
multiple dimensions, including many visualization forms like
box-graph, score, and text representation. DMIX entails an
extensive set of functions. Some of them are used via “slap-
ping” — dragging one music piece and dropping on another,
performing some interaction between both. The combination

of multi-dimensional representation with slapping yields an
interesting form of abstraction in the following way. One view
can represent the pitch of a music piece, another view the
rhythm of another piece; by slapping (dropping) the pitch
view on the rhythm view, one can obtain a new music piece
composed of these pitch and rhythm specifications. In this
operation the rhythm dimension of the second piece has been
abstracted into a function that has been applied to the first
piece.

Elody : The Elody environment of Orlarey [4] supports
true concrete abstraction, as discussed in detail earlier in this
paper. Elody can be viewed as a visual functional language
that is grounded in the music domain. Furthermore, following
the pure functional tradition, Elody does not distinguish data
from functions. Consequently, compositional processes can be
applied to high-order functions, so to yield high-order scores,
and music objects can be considered as functions as well.
According to its designers, Elody can be viewed as an active
music notation, since its programs are also scores.

B. Historical and Structural Editing

Chimera : The double-view historical editor that we
propose is influenced, to a great extent, by the Chimera
graphical editor of Kurlander [9]. The aim of Chimera was to
investigate ways to automate repetitive tasks in user interfaces.
Chimera lets the user “program an application through its
user interface.” Five powerful techniques were developed
to automate repetitions; the most relevant to this work are
editable graphical histories and macros by example.

Graphical histories encode in a “comics strip” metaphor
the commands used in an editing session: “Commands are
distributed over a set of panels that show the graphical state
of the interface changing over time” [9, p.11]. The graphi-
cal history is automatically maintained as the user performs
actions on the editor, and strategies are designed to make
histories shorter and focus on significant actions in the system.
Declarative rules encoding regular expressions of commands
are used to analyze the stream of commands issued by the
user and coalesce similar commands into a single pane of the
history.

Histories serve as a basis for a sophisticated form of undo-
redo where the user can select which section in the history to
undo or redo, and have the editor propagate changes through
the rest of the session as required. In addition, histories are
used as the basis for a form of abstraction implemented
in the graphical macro by example technique of Chimera .
The main concept is to abstract histories into functions by
generalizing some of the objects manipulated in a sub-session.
The abstracted sub-session is then named and can be used as
a new command.

The BOOMS approach is heavily influenced by Kurlander’s
work, in its focus over histories (which are called editing
graphs). The main difference is that Chimera depicts histo-
ries in the same visual language as the object editor, while
BOOMS , motivated by the need to denote structure in music
composition, depicts histories in a hierarchical view, focusing
on their structural properties. That is, Chimera depicts histories

12

as sequences of “cartoon-like” pictures. Each picture shows a
sequence of operations as a snapshot of the editor with graphi-
cal annotations that indicate where the modification happened.
In contrast, in BOOMS, histories appear in a hierarchical view.
Each operation is depicted by an iconic node in a tree with
arcs pointing to the parameters of the operation. The visual
language used for histories is, therefore, quite different from
the one used in the editor itself. It is a graphical rendering
of the procedures applied during the editing session. This
depiction highlights more clearly the structural properties of
the resulting objects: for example, it shows when an element
in the editor is shared by several operations (the same node
is reached by several arcs). It provides an easier basis for the
type of abstraction we are advocating, but it is less readable
than the Chimera approach. We believe that a combination of
the two visual languages can offer the “best of both worlds.”

The Programmer’s Apprentice : Another historical editor
that is somewhat relevant is the Programmer’s Apprentice
project [10] whose objectives were to study how a knowledge-
based editor can help automate the tasks of program writing,
modification and documentation. One of the main themes of
the research is that the editor must encode explicitly more
information than is written in the text of the program in
order to appropriately assist the programmer. In the KBEmacs
prototype, this additional knowledge was encoded in the
form of clichés, which encodes the knowledge shared by
the programmer and an external assistant when modifying
a piece of code. Definitions of clichés include a body over
which parameters are abstracted and, most importantly, a set
of annotations that explicitly describe the roles of parameters
and constraints over their instantiation.

This knowledge is used by the editor to provide the follow-
ing functionality: during program synthesis, the programmer
can select a cliché from a library and instantiate it using
explicit editor commands. The programmer can alternatively
enter code directly and an analyzer parses the code to recog-
nize instances of existing clichés. In both cases, the editor
maintains an explicit representation of the cliché structure
of the code — called the program plan — in addition to
the program text. Because the program plan is explicitly
maintained, the KBEmacs editor can support modification
of the program at a much higher level of abstraction than
a character based editor can. The Programmer’s Apprentice
project illustrates the need to maintain information beyond the
edited extensional object, in order to describe the intention of
the designer.

In KBEmacs , the integration of the domain value editing
and knowledge editing is through a stage of automatic analysis
(plan recognition) of user actions. While this approach is
conceivable in the programming domain, where a large cliché
library can be designed, it is much harder to apply in the
music domain (or any other creative domain), where even a
notation for structure is missing, and the notion of “composer
intention” is much harder to grasp. In addition, music creators
often consciously seek ambiguity in their composition, and
a plan recognition mechanism would perform poorly in such
conditions. The alternative approach implemented in BOOMS
is to provide explicit editing of the editing graph, to empower

the composer with the possibility to specify his intention.
Automatic analysis of the editing actions is beyond the scope
of this work.

Besides this difference, in BOOMS , as in KBEmacs , the
ideal place to introduce domain specific knowledge to in-
troduce sophisticated services in the editor is in the set of
editor commands. The BOOMS music knowledge base is
encapsulated in a library of editor commands, appearing to
the user in a palette, and plays a role parallel to KBEmacs’s
cliché library.

C. Double-View Editing

Double-view editing is important for any editor that stores
and operates on non-extensional values. Therefore, the ex-
tension of LATEX tools with the “Xdvi” tool, which extends
the editing session with an extensional view, was a major
improvement to LATEX document editing. Yet, in the LATEX-
Xdvi combination only the LATEX view is editable.

Lilac: [11] is a true double-view document editor. It
consists of a page view which is a “What-You-See-Is-What-
You-Get” editor and a source view which is an intensional
editor, that describes the document as a program written in
the Lilac document language. This language enables the user
to define new document structures. Both views are maintained
by hierarchical data structures: The source view by a syntax
tree which represents the parsing of the document, and the
page view by a display list which represents the hierarchical
geometrical relationships of the syntactical components. The
editor supports two way mapping relationships between the
page view image to the display list, between the display list
to the syntax tree and between the syntax tree to the source
view. Therefore, both views are editable.

The author admits that 95% of the time he spent on the page
view alone, while the source view is used mainly for editing
complicated structures, for global styling, or for creating
new styles and constructs. The BOOMS approach is clearly
influenced from Lilac — the DAG object of BOOMS corre-
sponds to Lilac’s hierarchically maintained source view; the
three different applications correspond to three different page
view applications. In that sense, BOOMS generalizes Lilac
into a domain independent double-view editor, and uses the
two forms of concrete abstraction as a main programmability
means. However, BOOMS is different from Lilac in two major
aspects:
• the structure view is a graphic icon-based structure editor

rather than Lilac’s source text view,
• There is no relation to abstraction in Lilac.

VII. CONCLUSION

In this paper we propose to use concrete abstraction as
a unifying tool for extending editors with end-user pro-
grammability, in a domain independent way. It is appropriate
for creative domains where abstractions are not planned but
emerge from concrete examples, and for helping users to deal
with repetitive tasks or define new primitive operations. We
have shown that concrete abstraction can be used for creating
templates of structured objects in the editor subject domain,

13

and of sequences of user actions and behaviors. We argue that
concrete structure abstraction that is based on an edit graph is
particularly suitable for historical editor programmability that
includes undo and redo operations.

Our approach combines the concrete abstraction of GCalc
that enables powerful end-user computing with the historical
editing of Chimera and the double-view editing mode of
Lilac. It extends the concrete value abstraction of GCalc with
concrete structure abstraction, it extends the historical view of
Chimera with hierarchy and structure sharing, and it extends
the double-view architecture of Lilac to general domains, not
necessarily text documents.

BOOMS is a working initial prototype for a double-view
historical editor that features concrete abstraction as a major
end-user computing means. The generality of BOOMS is
demonstrated by three different applications in the music,
graphics and symbolic arithmetic domains.

Future work in this direction is required. On the theoretical
level, concrete structure abstraction can be further studied and
possibly extended, to allow for abstractions that are currently
restricted. On the empirical level the integration of the two
views in BOOMS should be further developed. In addition,
the history edit graph can be further studied, and simplification
algorithms and a normal form should be developed.

APPENDIX I
BOOMS

The BOOMS project, described in [2], addresses the prob-
lem of providing a computer-based environment to support
the music composition process. One of the prominent aspects
of the composition process is the importance of structure: for
a composer, a music piece is more than its flat score; it is
a structured object, and its structure captures the expressive
intention of the composer. Structure is, therefore, a major
motivation behind BOOMS , following [12]. Existing music
editors do not provide appropriate support for composition:
most only address the score editing process. Given this state
of affair, composers must add personal annotations to their
compositions to remember their structure.

BOOMS presents an editor intended for music composition.
It supports a combination of structural and non-structural
editing of music pieces and demonstrates the added power
provided by an explicit representation of structure. The main
focus of the work has been on:
• Developing a methodology to combine structural editing

in non-structural editors;
• Investigating how abstraction mechanisms can help turn-

ing an editing session into a reusable function, which
captures the intention of the composer;

• Formally comparing direct abstraction on the music
pieces being edited and abstraction on the history of the
commands the composer used to build a piece.

The BOOMS system was developed as a general application
framework for developing editors with support for a combi-
nation of structural and regular editing and support for end-
user abstraction as a tool to define reusable functions without
programming. The framework is implemented in CLOS (the

Common Lisp Object System) and features a sophisticated
Windows interface. Instantiating the framework to a specific
editing domain is a simple task, due to the clean object-
oriented design of the framework.

While the BOOMS framework is generic, it is most effec-
tive when instantiated to domains similar to music compo-
sition, where a user incrementally builds a structured object
by using a restricted set of commands to combine smaller
units into larger ones. The framework was instantiated to
three domains to illustrate the support an abstraction-enabled
structural editor can provide to end users: music composition,
arithmetic expressions and GCalc.

In a BOOMS instantiated editor, the end-user interacts with
a hierarchical editor that manages editing histories. The final
goal is to have a full double-view editor that will allow stan-
dard editing operation while, at the same time, the hierarchical
view is maintained. The editing graph can be edited by the
user to specify structural intentions. Abstraction can also be
performed on the editing graph, turning a sequence of editing
operations into a new reusable function.

A feature of the BOOMS framework is that it defines a
place where domain-specific knowledge can be introduced
in an editor: the node constructors for the domain and the
operators for each type in the domain can be encapsulated
in well-defined domain libraries and easily integrated in the
BOOMS framework. In particular, the BOOMS music domain
editor incorporates well-defined knowledge of music notes,
intervals, and arithmetics over them. It is a promising area of
future work to extend this package to a more comprehensive
music knowledge base.

REFERENCES

[1] Y. Orlarey, D. Fober, S. Letz, and M. Bilton, “Lambda calculus and
music calculi”, in International Computer Music Conference. San
Francisco: International Computer Music Association, 1994.

[2] Eli Barzilay, “Booms: Booms object oriented music system”, Master’s
thesis, Ben-Gurion University, Computer Science, 1997.

[3] Y. Orlarey, D. Fober, and S. Letz, “Elody: A java + midishare
music composition environment”, in International Computer Music
Conference, 1997.

[4] Y. Orlarey, D. Fober, and S. Letz, “The role of lambda-abstraction in
elody”, in International Computer Music Conference, 1998.

[5] D.V. Oppenheim, “Dmix: A multi faceted environment for composition
and performing computer music: Its design, philosophy, and implemen-
tation”, in Computer Music Days, Delphi, Greece, 1992, pp. 1–10.

[6] A. Church, The Calculi of Lambda Conversion, Princeton University
Press, 1941.

[7] Simon L. Peyton Jones, The Implementation of Functional Programming
Languages, Prentice-Hall, 1986.

[8] H. Taube, “Stella: Persistent score representation and score editing in
common music”, Computer Music Journal, vol. 17, no. 4, pp. 38–50,
1993.

[9] D.J. Kurlander, Graphical Histories, PhD thesis, Columbia University,
Computer Science, 1992.

[10] Charles Rich and Richard C. Waters, The Programmer’s Apprentice,
Addison-Wesley Publishing Company, 1990.

[11] K.P. Brooks, A Two-View Document Editor with User-Definable Doc-
ument Structure, PhD thesis, Stanford University, Computer Science,
1988.

[12] M. Balaban, “The music structures approach to knowledge representa-
tion for music processing”, Computer Music Journal, vol. 20, no. 2, pp.
96–111, 1996.

14

Mira Balaban holds a Ph.D. in computer science
from the Weizmann Institute of Science, and a music
degree from the Rubin Academy of Music in Tel-
Aviv. She is now affiliated with the Department
of Information Systems Engineering in Ben-Gurion
University (mira@cs.bgu.ac.il). Her research
is in the areas of knowledge representation, con-
ceptual modeling, database semantics, programming
languages, and computer music.

Eli Barzilay is a Ph.D. candidate in the Computer
Science department in Cornell University. His re-
search interests include applied logic, formal sys-
tems, programming languages, and computer music.
He received a B.Sc. and an M.Sc. in computer
science from Ben-Gurion University in Israel. He
can be reached at eli@barzilay.org.

Michael Elhadad is a Senior Lecturer at Ben Gurion
University. His research interests include intelligent
user interfaces and computational linguistics. He
received a Ph.D. in computer science from Columbia
University. Contact him at the Dept of Computer
Science, Ben Gurion University, Beer Sheva 84105,
Israel, elhadad@cs.bgu.ac.il.

